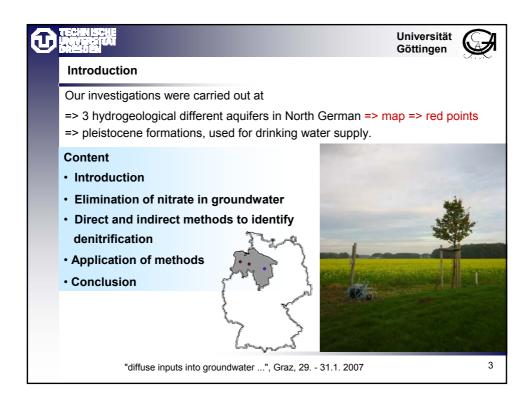
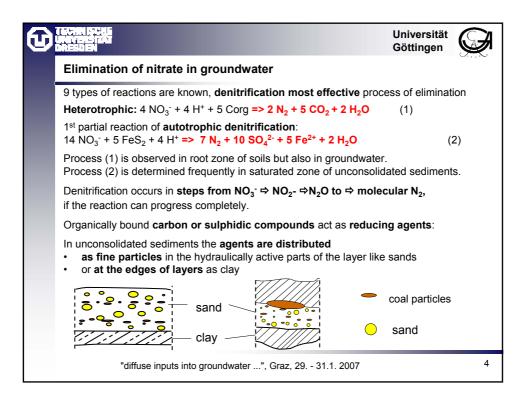


Universität Göttingen

Introduction


- Many catchments of groundwater resources are agriculturally used.
- If nitrate is low in groundwater, in raw water => process of nitrate elimination
 => main reason


For water supply following questions are important:

- When can raised nitrate concentrations be expected in wells?
- How will measures which decrease emission of nitrate from soil influence water quality at different points in groundwater body?
- Models are valuable tools for planning soil and water management.
- -Following conditions should be considered, applying such models:
 - Realistic depiction of groundwater balance + flow.
 - Sufficient knowledge about kinetics of nitrogen metabolism, about distribution in the subterranean space.
 - Knowledge about metabolism often is only inadequately available.
 - In such cases, kind of kinetics, their characteristics need to be based on assumptions.

"diffuse inputs into groundwater ...", Graz, 29. - 31.1. 2007

2

Universität Göttingen

Direct and indirect methods to identify denitrification

Modelling nitrate transport => mark off cells of 3D - model net in which denitrification occurs.

On this basis => characteristic values λ of the reactions shall be to assigned to cells, e.g. for equation $c(t) = co \cdot e^{(-\lambda \cdot t)}$ (3)

Different ways for identification of denitrification are possible:

First step, on the base of dates of water quality:

- Prerequisite: network of gauging stations that consider 3D groundwater body.
- · Indications:
- => No denitrification at O₂ ≥ 5 mg · L⁻¹ in pore water,
- => If O₂, NO₃⁻ ~ 0, => **rise of HCO**₃⁻ ⇒ heterotrophic **denitrification**, compared with gauging stations in the neighbourhood at which no denitrification occurs.
 - => rise of SO₄²⁻, partly Fe²⁺ or...

 ⇒ autotrophic denitrification.
- =>Dates do not supply secure proof ⇒ concentration can be influenced by other processes. => Therefore second step of identification

"diffuse inputs into groundwater ...", Graz, 29. - 31.1. 2007

5

Universität Göttingen

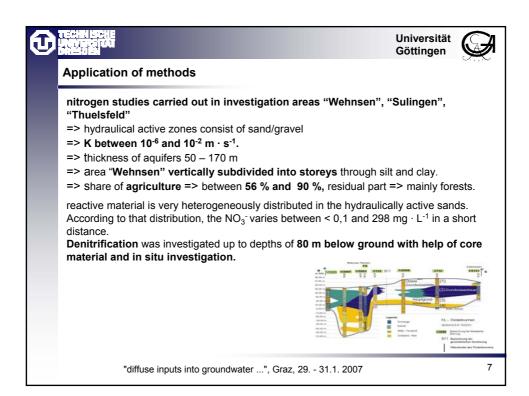
Direct and indirect methods to identify denitrification

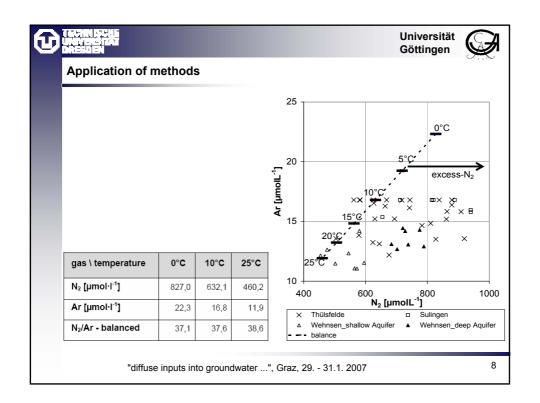
Second step, the gases N_2 , Ar and N_2O should be measured at the gauging stations. => they give a reliable identification on denitrification.

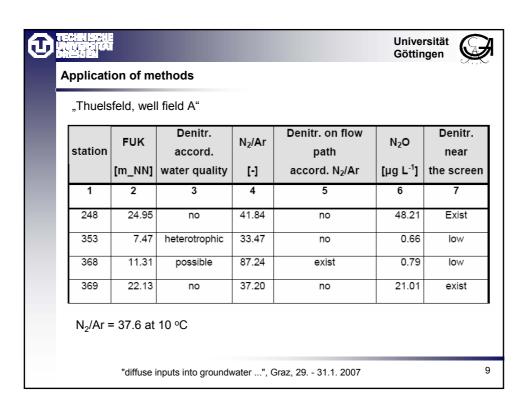
In groundwater ratio of gases $N_{2} \! /$ Ar determined by balance with atmosphere is 37.6 at 10 ^{0}C

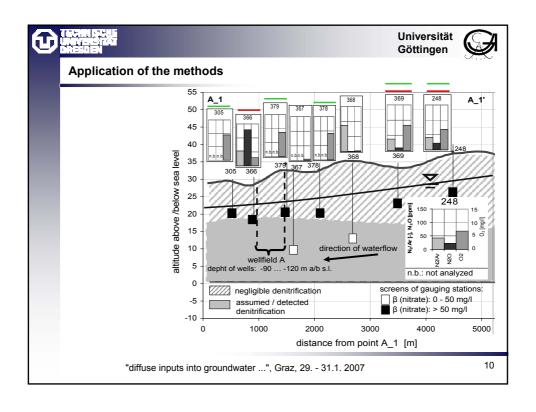
 $NO_3^- =>$ converted to $N_2 =>$ increase of N_2/Ar , => Ar remains unchanged.

Excess di-nitrogen:


 cN_2 excess = { (N_2/Ar) measured - (N_2/Ar) balanced} · cAr measured [μ Mol ·L⁻¹] (4)


Determination of ratio N₂/Ar and of "excess di-nitrogen" => relatively secure proof => denitrification on flow path between groundwater table and screen of gauging station.


- By means of further parameters as ${\rm SO_4}^-$ or ${\rm HCO_3}^-$ the kind of the reaction can be deduced.
- NO₂-, N₂O => indicator of incompletely running denitrification:
- N₂O may also occur when O₂ > 5 mg · L-1 in the pore water.


"diffuse inputs into groundwater ...", Graz, 29. - 31.1. 2007

6

Universität Göttingen

Conclusion

- Models that depict metabolism and transport of nitrate in a groundwater catchment of a waterworks are very suitable tools in order to plan measures to minmize emissions into groundwater.
- But until today models are still seldom build up and applied by enterprises of water supply.
- If a model of nitrate transport is supposed to be adapted to an aqifer, the metabolism of nitrate have to be known.
- In this case the measurement of the gases N_2 , Ar, $N_2 O$ can be a good aid.
- The measurement of this gases should become an indispensable support during the development of transport model in future.

"diffuse inputs into groundwater ...", Graz, 29. - 31.1. 2007

11

Universität Göttingen

Thank you for your attention

A view of Dresden and river Elbe

"diffuse inputs into groundwater ...", Graz, 29. - 31.1. 2007

12